Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Temporal variations in lava chemistry at active submarine volcanoes are difficult to decipher due to the challenges of dating their eruptions. Here, we use high-precision measurements of 226Ra-230Th disequilibria in basalts from Kama‘ehuakanaloa (formerly Lō‘ihi) to estimate model ages for recent eruptions of this submarine Hawaiian pre-shield volcano. The ages range from ca. 0 to 2300 yr (excluding two much older samples) with at least five eruptions in the past ∼150 yr. Two snapshots of the magmatic evolution of Kama‘ehuakanaloa (or “Kama‘ehu”) are revealed. First, a long-term transition from alkalic to tholeiitic volcanism was nearly complete by ca. 2 ka. Second, a systematic short-term fluctuation in ratios of incompatible elements (e.g., Th/Yb) for summit lavas occurred on a time scale of ∼1200 yr. This is much longer than the ∼200-yr-long historical cycle in lava chemistry at the neighboring subaerial volcano, Kīlauea. The slower pace of the variation in lava chemistry at Kama‘ehu is most likely controlled by sluggish mantle upwelling on the margin of the Hawaiian plume.more » « less
-
Abstract Shear localization in the upper mantle, a necessity for plate tectonics, can have a number of causes, including shear heating, the presence of melt, the development of a strong crystal preferred orientation, and the presence of water. The Josephine Peridotite of southwestern Oregon contains shear zones that provide an excellent opportunity to examine the initiation of shear localization. These shear zones are relatively small scale and low strain compared to many shear zones in peridotite massifs, which typically have extreme grain size reduction indicating extensive deformation. We use major, trace, and volatile element analyses of a large suite of harzburgites from the Fresno Bench shear zones to evaluate the mechanisms leading to shear localization. Lithological evidence and geochemical transects across three shear zones show a complex history of melting, melt addition, and melt‐rock interaction. The distribution of aluminum and heavy rare earth elements across the shear zones suggest that melt flow was focused in the centers of the studied shear zones. Water concentrations in orthopyroxene grains of 180–334 ppm H2O indicate a comparatively high degree of hydration for nominally anhydrous minerals. The correlation of water with aluminum and ytterbium in orthopyroxene is consistent with a melt source for this hydration, suggesting that water equilibrated between the melt and peridotite. The presence of melt and hydration of the host rock provide mechanisms for initial weakening that lead to localized deformation.more » « less
An official website of the United States government

Full Text Available